

Орджоникидзе З.Г., Гершбург М.И., Арьков В.В., Саенко Л.Д.

РЕАБИЛИТАЦИЯ СПОРТСМЕНОВ ПОСЛЕ СШИВАНИЯ АХИЛЛОВА СУХОЖИЛИЯ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИМосква 2012

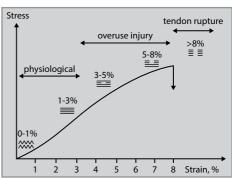
МОСКОВСКИЙ НАУЧНО-ПРАКТИЧЕСКИЙ ЦЕНТР МЕДИЦИНСКОЙ РЕАБИЛИТАЦИИ, ВОССТАНОВИТЕЛЬНОЙ И СПОРТИВНОЙ МЕДИЦИНЫ

Орджоникидзе З.Г., Гершбург М.И., Арьков В.В., Саенко Л.Д.

РЕАБИЛИТАЦИЯ СПОРТСМЕНОВ ПОСЛЕ СШИВАНИЯ АХИЛЛОВА СУХОЖИЛИЯ

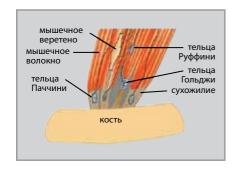
Настоящие методические рекомендации подготовлены на основании опыта многолетней работы отделения восстановительного лечения МНПЦ МРВСМ и рассчитаны на оказание помощи специалистам по медицинской и спортивной реабилитации, врачам ЛФК, травматологам-ортопедам. Содержатся сведения о послеоперационной реабилитации спортсменов с разрывом ахиллова сухожилия, его анатомии, биомеханике, эпидемиологии, этиопатогенезе и оперативном лечении. Один из разделов публикации посвящен роли стабилометрии в диагностике функционального состояния спортсменов.

Эпидемиология разрыва ахиллова сухожилия (АС)


Несмотря на значительные усилия, до сих пор добиться значительного уменьшения спортивных травм не удается. Наоборот, отдельные виды травм (к ним относятся и подкожные разрывы АС), начиная с 50-х годов двадцатого века, в промышленно развитых странах стали значительно более частыми [1, 2]. Это связано в основном с вовлечением в занятия фитнесом и спортом широких слоев населения, а также недостаточной эффективностью мер профилактики. Особенно травмоопасными являются виды оздоровительного и профессионального спорта, связанные с большим количеством бега, прыжков и сложных манёвров (баскетбол, волейбол, футбол, прыжковые и беговые дисциплины легкой атлетики и пр.), а также единоборства [3,4,5]. Наряду с увеличением частоты разрывов АС произошло увеличение их рецидивов, что, очевидно, свидетельствует о не всегда высоком качестве послеоперационной реабилитации [6,7].

Анатомия и биомеханика ахиллова сухожилия

АС – самое мощное и прочное в организме человека, способное выдерживать значительные статические и динамические нагрузки – это общее сухожилие поверхностно расположенной икроножной и камбаловидной мышцы, находящейся в глубоком слое. Последние, сливаясь, образуют трёхглавую мышцу голени (ТМГ), которая вместе с АС прикрепляется к пяточной кости (рис.1). Волокна АС имеют спиралевидный ход, подобно канату, что обеспечивает его высокую прочность, и в то же время – способность к некоторому удлинению при физических нагрузках за счет распрямления этой спирали и таким образом амортизации нагрузки. При растяжении АС при беге в фазе заднего толчка происходит накопление энергии, которая отдается в фазе отталкивания. Этот процесс получил название рекуперации. Однако, прочность АС хотя и значительна, но небеспредельна: она составляет около 50 Н/мм2 [8]. Удлинение АС под влиянием стресса на 3-5% следует рассматривать как физиологическое; до 8% – как повреждающее; при удлинении же АС более чем на 8% неизбежно следуют микро- и макроразрывы [9] (рис.2). Ткань АС состоит на 30% из коллагена (в основном 1-го типа), 2% эластина, кислых полисахаридов (гиалуроновая кислота, хондроитинсульфат) и воды. АС окружено оболочкой (паратеноном) для уменьшения сил трения при движениях. В месте прикрепления АС к пяточной кости расположены две слизистые сумки: поверхностная (bursa achillea) – между сухожилием и кожей,



2. Физиологическое и патологической удлинение АС под влиянием физической нагрузки (Novachek N., 1998)

и глубокая (bursa subachillea) – между АС и пяточной костью. Обе сумки выполняют защитную функцию, снижая трение. В ткани АС находится большое количество проприорецепторов (рис.3), которые помогают оптимизировать нейро-мышечную координацию спортсмена, в частности согласованную работу всех мышц голени при различных маневрах (бег с изменением направления, ускорениями и торможениями, прыжках и ударных действиях ногой). Именно таким образом система проприорецепции в сочетании со зрительным и вестибулярным анализаторами, обеспечивают нейро-мышечный контроль, играющий определяющую роль в повседневной жизни человека и особенно при его занятиях спортом [10]. Количество сосудов, снабжающих АС, снижается от пяточной кости проксимально и достигает минимума

3. Механорецепторы сухожилий и мыши

на уровне 4-5 см от пяточного бугра (так называемая аваскулярная зона), где питание осуществляется лишь с помощью диффузии из синовиальной жидкости. Таким образом, АС относится к брадитрофным (малокровоснабжаемым) тканям, что делает его весьма уязвимым к микротравматизации и развитию дегенеративных заболеваний. Стопа, имеющая арочное строение, вместе с подошвенным апоневрозом, ТМГ и АС образуют единую

функциональную систему, амортизирующую ударные нагрузки при беге и прыжках. При наличии значительного уплощения или при увеличение высоты продольного свода стопы (пОлая стопа), пространственных несоответствиях строения плюсны, гиперпронации или гиперсупинации стопы ее амортизационные свойства уменьшаются и нагрузка на АС соответственно увеличивается, что приводит к его изнашиванию и формированию хронических заболеваний [11, 12, 13].

Этиопатогенез разрыва АС у спортсменов

Патогенез спонтанных разрывов АС мультифакторный. Он обусловлен целым рядом экзогенных и эндогенных факторов или их комбинацией.

Главным эндогенным фактором являются дистрофически-дегенеративные изменения – в самом сухожилии (тендопатия), его оболочке (паратенонит), а также в слизистых сумках (ахиллобурсит). Наиболее часто данная патология наблюдается у спортсменов, занимающихся беговыми видами легкой атлетики, играми с большим количеством прыжков (баскетбол, волейбол, гандбол, футбол и др.). Эти заболевания развиваются при перенапряжении опорно-двигательного аппарата или микротравмах. К эндогенным факторам относятся также лечебные инъекции стероидных препаратов непосредственно в АС, что приводит к развитию некроза и спонтанному разрыву сухожилия [14], а также врожденные аномалии строения стопы: выраженное продольное плоскостопие или излишне выраженный свод стопы (полая стопа), гиперпронация стопы, а также врожденное укорочение АС, что приводит к неравномерной нагрузке на АС и его микротравматизации.

К экзогенным факторам относят чрезмерные тренировочно-соревновательные нагрузки, ошибки в их планировании, недостаточное использование средств восстановления (упражнений на растяжение, восстановительного массажа и физиотерапии); использование обуви с низкими амортизационными качествами, а также нарушение правил соревнований. Известно, что одинаковая физическая нагрузка может привести как к положительной адаптации с гипертрофией АС, так и к дистрофическим изменениям. По данным различных исследований, хронические заболевания АС развиваются именно в связи с неадекватными тренировочными нагрузками (бег по склонам холмов до 160 миль за недельный микроцикл, резкие ускорения и торможения, смена покрытия с жесткого (например, асфальтовое шоссе) на мягкое

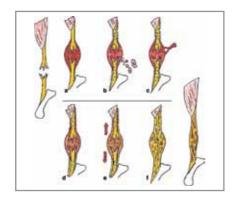
(песчаный грунт) [15, 16, 17]. При этом, снижается механическая прочность АС, возникает дефицит проприоцепции, что значительно увеличивает риск разрывов АС. Так, по данным исследований у подавляющегося большинства пациентов с разрывом АС в период, предшествующий травме, отмечалась симптоматика тендопатии. Например, у легкоатлетов-бегунов на средние и длинные дистанции разрыв АС происходил в 72% случаев именно в связи с его предшествующими хроническими заболеваниями [18].

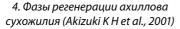
Механогенез разрыва ахиллова сухожилия

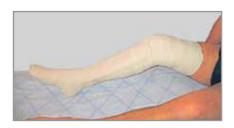
При исследовании механизма разрыва АС у 92 спортсменов выяснилось, что около 17% травм произошло при резкой, внезапной дорсифлексии стопы, когда пятка попадала в выемку грунта; у 10% – при неудачном приземлении после прыжка [19]. Травмы происходили, как правило, в конце тренировки или соревнований, на фоне глубокого утомления спортсмена, или при недостаточной разминке, а также в условиях низкой температуры окружающей среды. Вслед за разрывом АС немедленно развивается недостаточность ТМГ.

Лечение разрыва АС у спортсменов

В настоящее время методом выбора разрыва АС для спортсменов является только оперативное лечение. Операция также является методом выбора при частичном разрыве АС. Операции, выполненные в ранние сроки, дают меньшее количество осложнений и, как правило, обеспечивают более раннее восстановление спортивной работоспособности.


Существуют два основных, конкурирующих между собой метода операций по сшиванию АС: открытый (тенотомия), с обнажением через кожный разрез сухожилия и закрытый (чрезкожное сшивание). Достоинством открытого метода является его проведение под контролем зрения хирурга, который имеет таким образом возможность иссечь поврежденные волокна, плотно свести концы разорванного АС, адаптировать их и затем надежно сшить с легким натяжением, что предохраняет его от последующего удлинения. Недостатком открытого метода является значительное количество кожных осложнений (гематом, нагноений, лигатурных свищей и т.д.), лечение которых удлиняет сроки восстановления спортивной работоспособности.


Эти осложнения особенно часты, если операция делается не ближайшие дни после травмы, а спустя длительный срок. В результате различных осложнений до 5% спортсменов вынуждены прекратить свою дальнейшую карьеру в спорте [20]. Однако, после операций открытого типа рецидивные разрывы АС происходят значительно реже, чем при закрытых операциях [21, 22, 23] и др.


Впервые операцию закрытого типа (чрезкожный погружной шов АС) выполнили в 1977 г. хирурги из США Griffith и Ма. При этом методе операций шовная нить без разреза, лишь путем прокола кожи, проводится через дистальный и проксимальный концы АС, а затем его концы сближаются при натяжении нитей. После операции с помощью ультразвукового исследования (УЗИ) хирург проверяет сопоставлены ли концы сухожилия. Хирургов привлекает простота операций закрытого типа, экономическая выгода в связи с сокращением времени пребывания пациента в больнице и отсутствие нагноений послеоперационных швов, однако УЗИ недостаточно точно отражают качество сопоставления концов АС. При этом методе чаще, чем после операций открытого типа, случаются рецидивы разрыва АС [24]. Другим грозным осложнением после подобных операций является удлинение АС [25], что порождает функциональную несостоятельность ТМГ: она недостаточно растягивается при движении и поэтому не может развить полную мощность, вследствие чего спортсмен не может свободно подниматься на пальцы стопы, делать подскоки и прыжки. У спортсменов с удлинением АС даже при медленном беге «шлёпает» стопа, а быстро бегать они не могут вовсе. К числу осложнений относится также повреждение n. suralis, после чего отмечаются неврологические расстройства. Всё это делает закрытый метод операции малопригодным для спортсменов.

При создании программ послеоперационной реабилитации необходимо принимать во внимание закономерности реконструкции АС, которые изучены достаточно подробно. Это – сложный и длительный процесс, в котором различают различные фазы, сменяющие друг друга (рис.4). Начальная фаза – деструкция ткани и гематома (а). Следующая фаза начинается с активации тромбоцитов и их внедрения в зону разрушения (в)., (с). В этих фазах требуются покой и холод. В следующей стадии происходит пролиферация слабо дифференцированных клеток, образующих рубцовую ткань, реваскуляризации и реиннервации АС (d). Для дальнейшего хода репаративных процессов требуется механическая стимуляция, т.е. дозированная физическая нагрузка (е). Под её влиянием начинается формирование волокон, содержащих коллаген 3-го типа, который постепенно трансформируется в более прочный

коллаген 1-го типа; одновременно формируется паратенон, растягиваются спайки и восстанавливается скольжение АС (f) [26].

5. Гипсовая лонгета

Этапы послеоперационной реабилитации спортсменов

Ранний послеоперационный период (0-6 недель после операции)

Существует два подхода к реабилитации в этот период. На протяжении многих лет используется консервативный способ с иммобилизацией конечности в гипсовой лонгете без нагрузки весом тела. Сразу после операции накладывается передняя гипсовая лонгета от средней трети бедра до пальцев стопы, которая выводится в положение максимального сгибания, а коленный сустав в среднефизиологическое положение, чтобы уменьшить натяжение сшитого АС (рис.5). Задачами лечения и реабилитации являются: редуцирование воспалительной реакции (отёка, боли); противодействие

гиподинамии, поддержание общей работоспособности спортсмена; стимуляция мышц бедра и голени с целью реваскуляризации сухожилия. Первая задача решается путем создания покоя для оперированной конечности. В первые 1-2 дня назначается строгий постельный режим, нога – в слегка приподнятом положении, а зона операции в течение первых суток для борьбы с отёком постоянно охлаждается криоманжетой. С 3-го дня спортсмену разрешается ходьба с костылями, без опоры на ногу. Назначается УВЧ и магнитотерапия через гипсовую повязку в течение первых 5-7 дней после операции. Для поддержания общей работоспособности спортсмен в палате выполняет общеразвивающие упражнения для здоровых частей тела 1-2 раза в день сначала по 15-20, через несколько дней по 30 минут. Через 2-3 дня после операции, когда состояние пациента улучшается, упражнения выполняются с использованием отягощений и сопротивлений (гантелей весом до 3-5 кг, резинового или пружинного амортизатора и других спортивных снарядов). Для стимуляции мышц бедра и разгибателей стопы спортсмен выполняет изометрические их напряжения, каждое длительностью до 5-6 секунд, 5-7 раз в день по 2-3 мин. Через 2 недели после операции добавляются изометрические напряжения ТМГ с минимальным усилием во избежание прорезания швов.. Через 3 недели гипсовая лонгета обрезается хирургом до верхней трети голени, освобождается коленный сустав, и гипсовая повязка превращается в гипсовый «сапожок», который сохраняется еще три недели (рис.6). Таким образом, общий срок иммобилизации составляет 6 недель, что вполне достаточно для формирования рубца, скрепляющего концы разорванного АС. С этого момента расширяется двигательный режим, спортсмены дополнительно выполняют динамические упражнения для тренировки силовой выносливости мышц бедра с использованием тренажеров: сгибание и разгибание голени, упражнения на велоэргометре и другие. При разгибании голени тренируется четырёхглавая мышца бедра, а при сгибании голени – двухглавая, полусухожильная и полуперепончатая мышцы бедра, а также проксимальная часть ТМГ, что способствует нормализации кровообращения и трофики АС.

В последние годы усовершенствованы методы операций закрытого типа. В сочетании с инновационными программами реабилитации, в которых особую роль играет использование функционального брейса (ФБ) для голеностопного сустава (рис.7), они дают хорошие результаты. ФБ позволяет осуществлять безопасный режим движений: направленное, дозированное сгибание стопы при ограничении её разгибания. Таким образом исключается расхождение швов и/или удлинение АС. После операции брейс фиксируется

в 20° подошвенного сгибания для уменьшения натяжения АС. Уже через 2 недели ФБ выставляется в нейтральное положение и начинают легкие движения стопы с дорсифлексией до нейтрального положения. Активная подошвенная и тыльная флексия стопы (до 20° подошвенного сгибания) осуществляется в исходном положении сидя или лежа (рис.8). Частичная нагрузка весом тела (по переносимости) возможна уже через 2 недели, а полная – к 6 неделям после операции. В остальном реабилитационные мероприятия осуществляются аналогично консервативному способу.

6. Гипсовый «сапожок»

7. Основной функциональный брейс для голеностопного сустава

8. Сгибание стопы при растяжении резинового амортизатора в брейсе (не ранее 5-й недели после операции)

Мы считаем крайне важными следующие конструктивные особенности ФБ:

- Высота до верхней трети голени, что обеспечивает его надёжную фиксацию;
- Шарнир, позволяющий хирургу для предупреждения травматизации АС принудительно регулировать угол сгибания и, особенно, разгибания в голеностопном суставе в соответствии с ходом репаративных процессов;
- Подошвенная часть, обеспечивающая плавный перекат стопы, что предохраняет АС от перегрузок.

Носится ФБ постоянно, снимается только для обработки кожи. Это позволяет к 6 неделям после операции восстановить полное подошвенное сгибание стопы. ФБ играет не только роль механической защиты АС: с помощью шарнирного устройства становятся возможными упражнения в безопасном режиме, сохраняется стимуляция проприорецепторов, предупреждается развитие спаек, тормозящих движения в голеностопном суставе. Применение ФБ в раннем послеоперационном периоде существенно сокращает сроки функционального восстановления и уменьшает количество осложнений. Средний срок возвращения к лёгкой работе – 22 дня после операции. Рецидивов в течение 1 года наблюдения у всех 46 пациентов не было зафиксировано. При ранней реабилитации с использованием ФБ отмечается значительно более раннее восстановление отдельных функциональных показателей у спортсменов [27, 28, 29] (табл.1).

Табл.1 Восстановление функциональных показателей у спортсменов (в неделях после операции).

Вид иммобили- зации	Нормальная походка	Медленный бег	Неконтактные виды спорта	Контактные виды спорта
Гипсовая лонгета	12	16	20	24
Функцио- нальный брейс	8	12	16	20

Период восстановления двигательной функции голеностопного сустава (от 1,5 до 2 месяцев после операции)

К времени прекращения иммобилизации формируется послеоперационный рубец, обладающий ещё невысокой прочностью и эластичностью и имеется тендомиогенная, сгибательно-разгибательная контрактура голеностопного сустава, связанная с тем, что сшивание АС хирургом выполняется обязательно с его натяжением и с некоторым укорочением. При длительной, до 1,5 месяцев, иммобилизации развиваются атрофия и снижение эластичности ТМГ. Нарушается походка, так как в фазе заднего толчка разгибание стопы недостаточно для нормальной ходьбы. В меньшей степени страдает плантарная флексия, которая восстанавливается уже через 1-2 недели. Кроме того, при травме погибает большое количество сухожильных механорецепторов (телец Гольджи и Паччини), что порождает дефицит проприоцепции. Это является фактором риска рецидивных повреждений.

Задачами реабилитации являются: восстановление двигательной функции голеностопного сустава (с акцентом на дорсифлексию), нормальной походки, сенсомоторного управления и общей выносливости спортсмена.

Главными средствами физической реабилитации являются физические упражнения в зале ЛФК, бассейне, а также тренировка в ходьбе, а вспомогательными – лазеротерапия, массаж и электростимуляция ТМГ, ускоряющие ремодулирование АС и повышение сократительной способности мышц.

Перед началом тренировки в ходьбе, кинезо- и гидрокинезотерапии необходимо предупредить спортсмена о необходимости точно выполнять все назначения врача-реабилитолога, чтобы предупредить возможные осложнения, вплоть до рецидивного разрыва АС. Требуется также тщательный контроль инструктора ЛФК за выполнением назначенных врачом упражнений.

Тренировка в ходьбе – важная составная часть постиммобилизационного периода реабилитации спортсмена, способствующая восстановлению двигательной функции голеностопного сустава и тренировки силовой выносливости мышц стопы и голени.

Большинство рецидивных разрывов АС происходит именно в первые дни после прекращения иммобилизации, непосредственно во время ходьбы, поэтому требуется самый пристальный контроль со стороны врача-реабилитолога и инструктора ЛФК и полная концентрация внимания пациента во время упражнения. Специальное исследование с помощью электромиографии выявило, что нагрузка на АС при ходьбе зависит от степени плантарной флексии стопы. Так, подъем пятки на один дюйм (2,5 см) с помощью подпяточника или набойки каблука минимизирует нагрузку на послеоперационный шов и делает ходьбу более безопасной [26]. Поэтому с первых дней после прекращения иммобилизации спортсмену рекомендуется ходьба в обуви с каблуками высотой до 4-5 см (за счет набоек). Если спортсмен чувствует себя неуверенно, в первые 1-2 дня допустима ходьба с костылями. Перед началом тренировки пациента необходимо обучить правильной технике ходьбы. Трасса должна быть безопасной – ровной и не скользкой, обязателен зрительный контроль за постановкой стопы: недопустима ротация переднего отдела стопы кнаружи – ось стоп должна быть строго параллельна оси движения. Длина шагов должна быть одинаковой для каждой ноги и обеспечивать плавный перекат от пятки к первому пальцу стопы, темп медленный. Тренироваться зимой, во время гололёда, недопустимо. В фазе «заднего толчка» спортсмен должен чувствовать легкое натяжение в зоне операции. Длительность ходьбы постепенно увеличивается от 10 до 45 минут. По мере восстановления эластичности ТМГ увеличивается длина шага. Темп также должен постепенно увеличиваться от медленного (60 шагов в минуту) до среднего (70-80 шагов в минуту). При возникновении осложнений (потёртости, покраснения в зоне операции, отёке, болях) в зависимости от их выраженности дозировка немедленно уменьшается, либо ходьба временно отменяется.

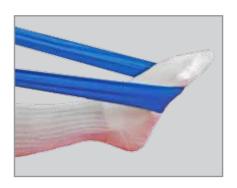
При увеличении дорсифлексии стопы высота каблуков уменьшается. Обычно уже через 10-15 дней спортсмен уже может ходить в кроссовках, используя подпяточники, а позднее уже без них, при средней длине шагов. В зимнее время года для профилактики травм тренировка в ходьбе может выполняться в облегчённом брейсе, вставляемом в кроссовки (рис.9).

В зале ЛФК все упражнения в этом периоде выполняются в первые 7-10 дней только в облегчённых исходных положениях (и.п.) лежа и сидя для улучшения микроциркуляции в зоне операции, снижения нагрузок на АС и профилактики травм. Длительность реабилитационной тренировки спортсменов – до 1,5 часов. Во вводной части выполняются общеразвивающие упражнения для здоровых частей тела без снарядов, со снарядами (гантели,

амортизаторы и тренажеры). В основной части выполняются следующие специальные упражнения в порядке их усложнения:

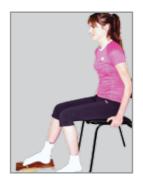
1. Облегченные, без выраженных усилий упражнения для пальцев (сгибание и разгибание) и голеностопного сустава с максимальной амплитудой (сгибание, разгибание, супинация, пронация, отведение и приведение, вращение); дозировка – до 5 минут. При значительном отека стопы и голени для облегчения лимфо- и кровообращения рекомендуется выполнять упражнения для голеностопного и коленного суставов с приподнятой ногой, например при опоре на скамейку или фитбол.

9. Облегчённый брейс

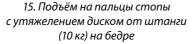


10. Сгибание 1-го пальца стопы с растяжением резинового амортизатора

- 2. Сгибание 1-го пальца, растягивая резиновый амортизатор 1-2 минуты (рис.10);
- 3. Сгибание 2-5 пальцев, растягивая резиновый амортизатор 1-2 минуты;
- 4. Упражнения с лёгким растяжением ТМГ:
- прокатывание стопой мяча 3-5 минут;
- самомассаж стопы на валике (рис.11);
- дозировка 2-3 мин. (до ощущения "горячей подошвы");


11. Самомассаж стопы на массажном валике

12. Сгибание стопы с растяжением резинового амортизатора

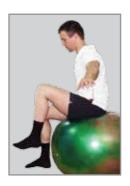

13. Разгибание стопы с растяжением резинового амортизатора

14. Тренировка плантарных мышц с помощью мини-тренажера

- 6. Упражнения с целью тренировки силовой выносливости мышц стопы и голени:
- попеременное выполнение сгибания (рис.12), разгибания (рис.13) стопы с сопротивлением, растягивая амортизатор малой мощности. Амплитуда средняя, усилия постепенно увеличиваются за счет подбора все более и более мощного амортизатора; упражнение выполняется до утомления, для каждой мышечной группы с паузами для отдыха, до 3-5 раз за одну реабилитационную тренировку;
- упражнения для тренировки плантарных мышц на мини-тренажёре (рис.14).

16. Упражнение на растяжение ТМГ

- вращение педалей велоэргометра выполняется в первые 1-2 занятия при опоре на педаль пяткой и средним отделом стопы, в дальнейшем


 ее передним отделом; мощность постепенно увеличивается от 50 до
 150 Вт в зависимости от пола, возраста и спортивной квалификации; длительность – 10-20 минут. Упражнение не только тренирует мышцы голени и бедра, но является также аэробной тренировкой, необходимой для поддержания общей работоспособности спортсмена.
- в и.п. сидя на стуле, на бедре отягощение до 5-10 кг (диск от штанги), которое спортсмен придерживает руками. Подъём на пальцы стопы (рис.15). Упражнение тренирует силовую выносливость преимущественно камбаловидной мышцы. Отягощение постепенно увеличивается до 10-15 кг. Дозировка – до утомления.
- 7. Упражнение на растяжение ТМГ:
- первые упражнения в и.п. стоя для обеспечения безопасности рекомендуется выполнять в облегчённом брейсе на протяжении 1-2 недель
- и.п. стоя на расстоянии 1-1,5 м. от стены, в упоре кистями, колени полностью выпрямлены: ходьба на месте, не отрывая пальцы от пола – 1-2 мин. (рис.16);
- по мере восстановления дорсифлексии стопы упражнение может выполняться в положении низкого старта (рис.17);
- 8. Ходьба по дорожке (под углом $5-10^{\circ}$) механического тредбана с постепенным увеличением длины шагов способствует дозированному растяжению ТМГ и АС (рис.18) 3-5 минут;

17. Упражнение на растяжение ТМГ в позиции низкого старта

18. Тренировка в ходьбе на тредбане

19. Ходьба на месте с высоким подниманием бедер сидя на фитболе

20. Отбивание ногой футбольного мяча в и.п. сидя на фитболе

- 9. Упражнения с целью восстановления проприоцепции выполняются в и.п. сидя на фитболе:
- шагательные движения (рис.19).
- то же упражнение выполняется с вращением головы и закрыванием глаз на 2-3 секунды. При этом значительно активизируется не только механорецепторы, но также вестибулярный и зрительный анализаторы.
- Спортсмены игровых видов выполняют упражнения с мячом: отбивание футбольного мяча ногой (рис.20), а также броски баскетбольного мяча, передачи волейбольного мяча.

21. Упражнение с использованием «бабочки» в бассейне

22. Подъём на степ в бассейне

Упражнения в бассейне в этом периоде имеют особое значение: благодаря физическим свойствам воды они позволяют быстро восстановить нормальную походку, увеличить дорсифлексию стопы и начать тренировку ТМГ. При этом они безопасны, т.к. падение в бассейне невозможно по определению. Температура воды в бассейне +32-34°С способствует расслаблению ТМГ. При медленных движениях вода оказывает выталкивающий эффект и является фактором, облегчающим выполнение упражнений. Благодаря этому имеется возможность выполнять в бассейне упражнения, в этот период еще не доступные в зале ЛФК. При быстрых же движениях, особенно с использованием ластов или "бабочки" для стопы (рис.21), водная среда оказывает выраженный тормозящий эффект и содействует тренировки силовых возможностей в изокинетическом режиме.

Упражнения перечислены в порядке усложнения:

- 1. Ходьба обычная с постепенным увеличением длины шагов 5 минут;
- 2. Ходьба усложненная (попеременно спиной вперед; «на прямых ногах»; скрестными и приставными шагами; с подниманием на пальцы стопы на каждом шаге; с высоким подниманием бедер; с захлёстом голени назад и др.) 5-7 минут;
- 3. И.п. стоя в 1 метре от поручня: динамический стречинг ТМГ. Техника выполнения следующая:
- спортсмен выполняет ходьбу на месте, не отрывая пальцы от пола и выполняя дорсифлексию стопы 2-3 минуты;

- поднимание на пальцы обеих стоп 2-3 минуты;
- ходьба на пальцах стоп на месте и по периметру бассейна 3-5 минут;
- подъем на степ (рис.22) и сход спиной вперед 3-5 минут
- перешагивание через степ 2-3 минуты;
- подъем на пальцы стопы (на одной ноге) 1-2 мин.;
- упражнения с сопротивлением при использовании ласта «бабочка» (рис. 21).
- 4. Медленное плавание преимущественно брассом, т.к. в этом стиле особенно активно работают стопы спортсмена 5-10 минут; к концу периода медленное плавание выполняется с ластами. Общая длительность упражнений в бассейне составляет 30-40 минут.

Период тренировки силовой выносливости мышц стопы и голени (от 2-го до 3 месяца после операции).

В этом периоде активно происходит функционально-морфологическая перестройка АС, и оно постепенно приобретает всё более значительную прочность.

Задачами физической реабилитации являются: полное восстановления двигательной функции голеностопного сустава (особенно важно восстановить полную дорсифлексию); тренировка силовой выносливости мышц стопы и голени, в первую очередь ТМГ; восстановление опоры на пальцы стопы, совершенствование сенсомоторного управления и общей работоспособности спортсмена.

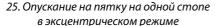
Главным средством физической реабилитация на данном ее периоде попрежнему является кинезотерапия, вспомогательными средствами – массаж и электростимуляция мышц голени и бедра, а также биомеханическая стимуляция (БМС).

Электростимуляция проводится по 10 минут, до выраженного сокращения ТМГ, повторными курсами по 10-12 процедур, с перерывами в течение 5-7 дней, выполняется на протяжение всего периода реабилитации.

В зале ЛФК в подготовительной части реабилитационной тренировки используются общеразвивающие упражнения, а также облегченные упражнения для голеностопного сустава с увеличением амплитуды до максимальной в и.п. сидя, лёжа и стоя. В основной части продолжается выполнение

упражнений предыдущего периода, которые дополняются упражнениями в и.п. стоя с целью обучения спортсмена выполнять ключевое упражнение – «подъем на пальцы» на оперированной ноге через цепь «подводяших упражнений» с постепенным их усложнением. В первые 2-3 занятия для частичной разгрузки АС спортсмен опирается руками на поручень и вес тела перемещает в сторону здоровой ноги. Постепенно, через 1-2 занятия упражнения должны выполняться уже при одинаковой опоре на обе ноги.

- 1. И.п. стоя: подъём на пальцы стоп. Начальная дозировка 10-15 раз.
 - При отсутствии осложнений количество повторений увеличивается до 20-30, а упражнение повторяется в течение одного занятия 2-3 раза.
- 2. И.п. то же. Полуприседания с одновременным подъёмом на пальцы стоп. Упражнение тренирует преимущественно камбаловидную мышцу. Количество повторений постепенно увеличивается от 10-15 до 20-30 и повторяется за занятие 2-3 раза.
- 3. Упражнение на степпере (рис.23) способствует тренировке ТМГ, мышц бедер и ягодиц, ускоряет ликвидацию сгибательной контрактуры голеностопного сустава. Длительность упражнения постепенно увеличивается от 5 до 10 минут.
- 4. При тренировке на велоэргометре мощность нагрузки достигает 150-175 Вт, длительность 5-10 минут.



23. Упражнение на степпере

24. Подъём на пальцы стоп в концентрическом режиме

26. Подъём на пальцы стоп в и.п. стоя на наклонной ступени

- 5. Следующее звено в цепи «подводящих упражнений» упражнения в эксцентрическом режиме, который способствует редуцированию боли и облегчает нагрузку на АС по сравнению с режимом концентрическим. Это упражнение большинство спортсменов сможет выполнить через 7-10 дней после начала тренировки в подъеме на пальцы стоп. Техника выполнения следующая: в и.п. стоя у поручня спортсмен поднимается на пальцы обеих стоп (рис.24); отрывает здоровую ногу от опоры и медленно опускается на пятку оперированной ноги. Затем цикл повторяется снова. Количество повторений увеличивается от 5-10 до 20-30. Упражнение спортсмен повторяет за занятие до 2-3 раз. Для улучшения самоконтроля это упражнение лучше выполнять перед зеркалом (рис.25).
- 6. Дальнейшее увеличение нагрузки связано с использованием ступени с наклонной площадкой под углом 10-15°, на которой спортсмен принимает исходное положение. При этом пятки опускаются ниже переднего отдела стоп и ТМГ и АС растягиваются. По законам биомеханики это стимулирует последующее сокращение мышцы, повышая эффективность упражнения (рис.26).

В результате сочетания специальных упражнений, массажа, электростимуляции и БМС спортсмены осваивают ключевое упражнение – подъем на пальцы стопы – в среднем к 12-13-й неделям после операции.

Проприоцептивные упражнения требуют особого контроля инструктора ЛФК для обеспечения безопасности пациента. Как только у спортсмена восстанавливается нормальная стойка с равномерной опорой на обе ноги, могут использоваться различные по устройству плоские и полусферические эластичные подушки и жёсткие, плоские балансировочные платформы с полуцилиндрическим или полушаровидным основанием. Различная ориентация балансировочной платформы с полуцилиндрическим основанием позволяет менять направление оси качения и активизировать различные мышечные группы стопы, голени, бедра и ягодиц. Расположение такой платформы нужно периодически менять, чтобы ось её качения располагалась попеременно то продольно (рис.27), то поперечно (рис.28). Мышцы голени выполняют не только двигательную функцию, но и обеспечивают стабильность стопы за счёт быстрых и синхронных сокращений в травмоопасных ситуациях, которые так часты в спорте. Одной из важных задач является с помощью проприоцептивных упражнений обучить ТМГ предупреждать форсированную дорсифлексию стопы, при которой чаще всего и происходит разрыв АС.

Используются следующие упражнения:

- 1. Равновесие на балансировочной платформе при билатеральной опоре выполняются с возрастанием степеней сложности:
- равновесие с отведением рук во фронтальной плоскости для облегчения баланса 1 мин.;

27. Баланс на платформе при продольном расположении оси качения

28. Баланс на платформе при поперечном расположении оси качения

29. Упражнение с гантелями при балансе на одной ноге в и.п. стоя на эластичной полусфере

30. Упражнение для рук с резиновым амортизатором стоя на балансировочной платформе

31. Сгибание туловища с касанием пальцами пола при опоре на одну ногу

32. Усложнение упражнений на косой ступени

- равновесие с одновременным выполнением упражнений с гантелями (рис.29), с резиновым амортизатором (рис.30) 1-2 минуты.
- равновесие с попеременным закрытием глаз (вначале на 1-2 с, затем на 3-5 с) и их открытием 1-2 мин.;
- равновесие с вращением головы попеременно в каждую сторону 1-2 минуты;
- стоя на полу сохраняя равновесие при унилатеральной опоре: наклоны туловища с касанием пальцами рук пола, (рис.31) 10-20 раз;
- равновесие на платформе при унилатеральной опоре, по 2-3 с, в первый раз при страховке руками, в том числе на косой ступени (рис.32);

33. Стретчинг ТМГ на вибростенде «ГРИЗЛИ»

34. Упражнение с волейбольном мячом при опоре на балансировочную платформу

Непосредственно после завершения реабилитационной тренировки спортсмены получают БМС по методике В. Т. Назарова (1986) на вибростенде ГРИЗЛИ. БМС способствует снятию утомления, повышению эластичности ТМГ и активизации проприрецепторов. Методика выполнения следующая: спортсмен ставит задний отдел стопы на вибростенд и, слегка отталкиваясь здоровой ногой от пола, ритмично растягивает руками ТМГ (рис.33). При этом вибрация распространяется по натянутым ТМГ и АС. Длительность 1-1,5 минуты.

Продолжается **тренировка в ходьбе** с увеличением дистанции до 5 км и скорости до 7-8 км/час.

Тренировочно-восстановительный период (от 3 до 5,5 месяцев после операции). К началу 3-го месяца после операции продолжается перестройка АС, которое постепенно восстанавливает свою прочность, хотя процесс его окончательного ремоделирования полностью завершается лишь через 6-8 месяцев после операции; полностью восстановлена двигательная функция голеностопного сустава; повышается тонус напряжения ТМГ. Спортсмены способны выполнять тестовое упражнение – «подъем на пальцы стопы» и адаптированы к длительной, быстрой ходьбе.

Задачами этого периода являются: адаптация к бегу; дальнейшая тренировка силовой выносливости мыщц голени, а также других мышц бедра и ягодичной области; начальная тренировка скоростно-силовых качеств; частичное восстановление специфических двигательных навыков спортсмена; психологическая реабилитация спортсменов, подготовка к начальному этапу спортивной тренировки.

Средствами физической реабилитации являются: кинезо- и гидрокинезотерапия; массаж, электростимуляция и БМС мышц голени, использование облегчённого брейса, а также тейпирования стопы.

Продолжаются упражнения с целью **тренировки силовой выносливости** ТМГ и других мыщц бедра и голени. Их особенностью является прогрессивное увеличение нагрузки (отягощения, сопротивления, мощности, амплитуды дорсифлексии стопы) при среднем или медленном темпе. Продолжаются упражнения с мощным резиновым амортизатором, на степпере, велоэргометре, а также подъем на пальцы стопы, стоя на «косой ступени» с изменяемым углом наклона опорной площадки до максимально возможного. Все упражнения должны выполнялись до выраженного утомления. После каждого упражнения выполняются упражнения на расслабление, растяжение и биомеханическая стимуляция (БМС).

При выполнении **проприоцептивных упражнений** рекомендуется сочетание тренировка баланса на платформе с силовыми упражнениями: поднимание на пальцы стопы стоя на платформе, либо с выполнением специальных вспомогательных или имитационных упражнений (рис.34,35).

Показаниями к началу медленного бега (не ранее чем через 4 месяца после операции) является отсутствие клинической симптоматики (болей, отёка в зоне операции), полное восстановление дорсифлексии и плантарной флексии стопы, уверенное выполнение теста «подъем на пальцы стопы» и выполнение теста на длительную (5 км) быструю (скорость 7-8 км/час) ходьбу. Первые беговые тренировки целесообразно осуществлять в облегчённом профилактическом брейсе. Первые 2-3 дня медленный бег выполняется под контролем инструктора ЛФК на тредбане (рис.36). Длительность бега увеличивается от 3 до 5 минут. После 2-3 беговых тренировок, при отсутствии осложнений и правильной технике бега, спортсмены тренируются на беговой дорожке (в легкоатлетическом манеже или на стадионе), руководствуясь «правилом 10%» (Майкели Л., Дженкинс М, 1997). В соответствии с этим пра-

вилом, суммарная дистанция медленного бега за недельный тренировочный микроцикл при отсутствии воспалительной реакции в зоне операции увеличивается в следующий микроцикл не более чем на 10% по сравнению с предыдущим, что предупреждает перегрузочные осложнения. Через 2-3 недели темп бега увеличивается до среднего, выполнялся бег не только по прямой, но с изменением направления («змейкой»), а через 5-5,5 месяцев после операции – начинают бег с ускорениями.

Самыми сложными являются плиометрические упражнения, особенно необходимые спортсменам игровых и прыжковых видов лёгкой атлетики.

35. Имитация движений слаломиста при опоре на эластичную полусферу

36. Медленный бег на тредбане

37. Боковые прыжки через валики

38. Прыжки со скакалкой со сменой ног

Показаниями для начала плиометрических упражнений являются: срок не менее 3,5-4-х месяцев после операции, полное отсутствие клинической симптоматики, высокие функциональные показатели, а также хорошая переносимость физических нагрузок. Главным условием плиометрической тренировки является обеспечение безопасности спортсмена. Для этого плиометрические упражнения строго ранжируются по степени интенсивности и координационной сложности. Начинаются они в бассейне, где благодаря физическим свойствам воды значительно уменьшается скоростно-силовой компонент и минимизирован риск травматизации.

Плиометрические упражнения в бассейне в порядке усложнения:

- Прыжки на двух ногах из полуприседа в полуприсед;
- Прыжки с подтягиванием бедер к груди:
- Прыжки со скрещением ног в сагиттальной плоскости;
- Прыжки с вращением туловища на 90°;
- Прыжки толчком двух ног с продвижением вперед, в стороны;
- Скачки с ноги на ногу с продвижением вперед.
- Усложнение указанных упражнений осуществляется при хорошей переносимости строго постепенно.

В зале ЛФК плиометрические упражнения начинаются не ранее 4-х с половиной месяцев после операции в следующей последовательности:

- 1. Упражнения со скакалкой на двух ногах. Начальная дозировка 30 секунд (рис.37).
- 2. Упражнения со скакалкой со сменой ног–1-2 мин.
- 3. В и.п. стоя у поручня, (в первые 1-2 тренировки при опоре руками):
- напрыгивание на степ, начальная дозировка 10-20 раз;
- боковые прыжки через степ (роллеры рис.38), начальная дозировка 10-20 раз.

Дальнейшее усложнение плиометрических упражнений должно осуществляться уже в рамках начального этапа спортивной тренировки.

Разрыв АС – тяжелая травма, которая оставляет стойкий след в психике спортсмена, поэтому необходимы меры психологической реабилитации:

строгое ранжирование упражнений по сложности и поощрение спортсмена за их успешно выполнение, что воодушевляет спортсмена и придаёт ему уверенность.

СТАБИЛОМЕТРИЧЕСКАЯ ОЦЕНКА УРОВНЯ ВОССТАНОВЛЕНИЯ, КРИТЕРИИ ВОЗВРАТА К СПОРТУ БЕЗ ОГРАНИЧЕНИЙ

После травмы любого сустава во всех случаях очень важно оценить функцию опорно-двигательного аппарата, а также объективно контролировать процесс восстановления [39]. Поскольку голеностопный сустав, с которым тесно связана функция АС, играет важную роль в обеспечении равновесия, методом объективного контроля уровня восстановления при травмах АС становится стабилометрия, в комплексе с оценкой клинических признаков.

Стабилометрия — метод регистрации проекции общего центра масс тела на плоскость опоры и его колебаний в положении обследуемого стоя, а так же при выполнении различных диагностических тестов. Данный метод позволяет исследовать статокинетическую устойчивость, баланс вертикальной стойки и ряд переходных процессов посредством регистрации положения, отклонений и других характеристик проекции центра давления на плоскость опоры [30,31,32,33,34,35,36,37].

В поддержании вертикальной позы (постурального баланса) участвуют многие функциональные системы организма: опорно-двигательная, центральная и периферическая нервная системы. Особую роль играют проприоцептивный, зрительный, вестибулярный и тактильный анализаторы, поэтому тестирование баланса тела в основной стойке может дать ценную информацию о функциональном состоянии значительной части опорнодвигательной и сенсорной систем.

Поддержание равновесия и координации движений – одно из важнейших условий жизнедеятельности человека, особенно в спорте. Стабилометрия чутко улавливает дефицит проприоцепции при различных видах патологии, в том числе при травмах и заболеваниях опорно-двигательного аппарата спортсменов. Дефицит постурального контроля является прогностическим фактором риска спортивных травм [36].

Статический постуральный контроль определяется как способность сохранять вертикальную позу при минимальной работе антигравитационных мышц; динамический постуральный контроль – как способность выполнять физические упражнения, сохраняя при этом устойчивое вертикальное положение тела [38].

Взаимосвязь между функциональным состоянием голеностопного сустава и уменьшением статокинетической устойчивости была отмечена более 40 лет назад [30]. Данные были подтверждены позднее многочисленными исследованиями. Сроки восстановления статокинетической устойчивости у спортсменов с острым небольшим или умеренным растяжением наружных связок голеностопоного сустава позволило установить следующее исследование [32]. Значения модифицированных показателей баланса в обеих плоскостях были значимо выше при стойке на поврежденной ноге до 2 недель после травмы. Но через 4 недели был выявлен дисбаланс только в саггитальной плоскости (при этом значения постепенно улучшались на обеих ногах от пробы к пробе). Полученные результаты свидетельствуют о значительном нарушении постурального контроля в течение первых 2 недель после травмы голеностопного сустава, что необходимо учитывать при определении сроков восстановления спортсмена для предотвращения повторной травмы. По нашим данным, в случае оперативного лечения разрыва АС подобные нарушения выявляются до 3-4 месяцев после операции.

Известна зависимость показателей статокинетической устойчивости от двигательного стереотипа. Профессиональные танцоры имеют более стабильный баланс тела в основной стойке и менее зависимый от зрительного анализатора, чем нетренированные лица того же возраста [34]. Проприоцептивная информация от стопы, находящейся в контакте с поверхностью опоры является предпочтительным сенсорным выходом для контроля баланса здорового атлета. Проприоцептивный афферентный поток важен для функционального контроля в процессе спортивной активности, что подтверждает целесообразность выбора данной методики для тестирования спортсменов в целях профилактики дальнейшей травмы. Футболисты, показавшие аномальные стабилометрические значения, имели значительно более высокий риск травмы голеностопного сустава в течении следующего сезона [35].

Среднепопуляционные нормативы стабилометрии (Normes 85, 1985) рассчитаны на лиц, не занимающихся спортом. Поскольку показатели статокинетической устойчивости спортсменов отличаются от лиц, не занимающих-

ся спортом, провели исследование статокинетической устойчивости у 315 спортсменов различных видов спорта [39].

Стабилометрическое тестирование проводили на диагностическом комплексе «Стабилан» (ОКБ Ритм, РФ). Спортсмены устанавливались на платформу без обуви в европейской стойке (пятки вместе, носки разведены на угол в 30°). Исследование проводилось с открытыми глазами и с закрытыми глазами (тест Ромберга). Для сравнения показателей статокинетической устойчивости на пораженной и интактной конечности применяли стойку на одной ноге в течении 51 с. Регистрировались следующие стабилометрические показатели: скорость перемещения центра давления (ЦД, мм/с), площадь статокинезиограммы (мм²), среднее положение и среднеквадратическое отклонение (разброс) ЦД во фронтальной и сагиттальной плоскостях (мм) в условиях наличия и отсутствия зрительного контроля.

На основании полученных результатов стабилометрического тестирования, с учетом нормального распределения данных, были разработаны межгрупповые шкалы оценки стабилометрических параметров.

С целью повышения эффективности дифференцированной оценки статокинетической устойчивости были разработаны межгрупповые сигмальные шкалы ($X\pm0,22\sigma$; $X\pm0,67\sigma$; $X\pm1,33\sigma$) оценки показателей стабилометрии, при этом крайние границы определялись реальной изменчивостью показателей. Формализованные данные позволяют более наглядно и объективно на уровне спортивного контингента различной специализации выявить уровень общих (суммарный балл) и частных проявлений статокинетической устойчивости (табл. 2, 3).

Таблица 2. Шкалы оценки статокинетической устойчивости у спортсменов (мужчины)

	Баллы						
Показатели	1	2	3	4	5		
Открытые глаза	Открытые глаза						
Скорость ЦД, мм/с	11,3-9,7	9,6-8,5	8,4-7,4	7,3-6,2	6,1-4,4		
Площадь ЦД, мм²	157,5-123,6	123,5-100,4	100,3-77,8	77,7-54,6	54,5-20,5		
Разброс ЦД ось х, мм	3,6-3,2	3,1-2,8	2,7-2,4	2,3-2,1	2,0-1,4		
Разброс ЦД ось у, мм	3,8-3,4	3,3-3,0	2,9-2,6	2,5-2,2	2,1-1,5		
Закрытые глаза							
Скорость ЦД, мм/с	20,8-17,4	17,3-15,0	14,9-12,7	12,5-10,2	10,1-6,6		
Площадь ЦД, мм²	289,7-29,0	228,9- 187,6	187,5- 147,2	147,1- 105,8	105,7-45		
Разброс ЦД ось x, мм	4,1-3,6	3,5-3,2	3,1-2,7	2,6-2,3	2,2-1,6		
Разброс ЦД ось у, мм	6,2-5,3	5,2-4,6	4,5-4,0	3,9-3,3	3,2-2,2		

Таблица 3. Шкалы оценки статокинетической устойчивости у спортсменов (женщины)

Помосототы	Баллы						
Показатели	1	2	3	4	5		
Открытые глаза	Открытые глаза						
Скорость ЦД, мм/с	8,7-7,5	7,4-6,7	6,6-5,8	5,7-5,0	4,9-3,7		
Площадь ЦД, мм²	93,7-74,4	74,3-61,2	61,1-48,1	48,0-34,9	34,8-15,5		
Разброс ЦД ось х, мм	2,9-2,5	2,4-2,2	2,1-1,8	1,7-1,5	1,4-1,1		
Разброс ЦД ось у, мм	2,6-2,3	2,2-2,1	2,0-1,8	1,7-1,6	1,5-1,2		
Закрытые глаза							
Скорость ЦД, мм/с	13,4-11,6	11,5-10,4	10,3-9,1	9,0-7,8	7,7-6,0		
Площадь ЦД, мм²	150,2-123	123,4-105	105,1-87,1	87,0-68,8	68,7-42,0		
Разброс ЦД ось х, мм	3,4-2,9	2,8-2,6	2,5-2,2	2,1-1,9	1,8-1,4		
Разброс ЦД ось у, мм	4,1-3,7	3,6-3,4	3,3-3,0	2,9-2,6	2,5-2,1		

При оценке результатов восстановления результаты пробы Ромберга спортсмена сравниваются с приведенными в шкалах, также используется сравнение интактной и оперированной ноги. Для определения динамики реабилитационного процесса рекомендуется ежемесячное тестирование.

Стабилометрическое исследование для определения возможности возврата в спорт после разрыва и оперативного сшивания АС рекомендуется проводить через 5 месяцев после операции у спортсменов циклических видов спорта, через 6 месяцев у спортсменов игровых и сложнокоординационных видов спорта.

При дефиците вышеприведенных показателей менее 20 % при сравнении оперированной и интактной сторон, отсутствии жалоб, ограничения подвижности, симметричной мышечной силы, положительных результатов дви-

гательных тестов допускается возврат в спорт, рекомендуется постепенное увеличение тренировочных нагрузок. При наличии дефицита более 20% или клинических признаков неполного восстановления возврат в спорт откладывается, реабилитация продолжается. Допуск спортсмена к тренировкам является ответственным моментом.

При решении вопроса о допуске к начальному этапу тренировки кроме анамнеза, клинических и функциональных показателей (стабилометрия, гониометрия, двигательные тесты и др.) обязательно принимается во внимание спортивная специализация, квалификация, возраст и пол спортсмена.

Медико-спортивная экспертиза для определения возврата в спорт без ограничений проводится в заключительной стадии послеоперационной реабилитации спортсменов (через 4,5-6 мес. после операции). В ней участвуют врачи-реабилитологи и специалисты по функциональной диагностике. Вердикт о степени готовности спортсмена к началу соревновательной деятельности выносится при сопоставлении различных клинических и функциональных показателей (в первую очередь двигательных тестов и стабилометрических показателей).

Противопоказаиями для допуска к к начальному этапу спортивной тренировки являются сохраняющиеся боли после физических нагрузок, отёки в зоне операции, лигатурные свищи и другие осложнения, а также неудовлетворительные результаты двигательных тестов. Наличие незначительное, в пределах физиологической асимметрии атрофии голени (до 0,5 см) не является противопоказанием для начала тренировок.

Количественные показатели двигательных тестов оперированной конечности должны быть на уровне показателей контралатеральной конечности или их превышать.

Критериями допуска спортсмена к начальному этапу спортивной тренировки являются:

- полное отсутствие клинической симптоматики (в частности признаков тендинопатии АС);
- отсутствие болей и отёков, правильная техника выполнения бега и прыжков малой сложности.
- результаты функциональных тестов, среди которых:

Стабилометрические показатели

Для оценки используется определение унилатеральной статокинетической устойчивости с открытыми и закрытыми глазами. Сравниваются показатели при стойке на оперированной и интактной ноге. Дефицит должен быть меньше 10%, кроме того спортсмен должен иметь не менее 1 балла по спортивной шкале (табл. 2,3).

Тест «подъём на пальцы стопы» характеризует силовую выносливость ТМГ. Он выполняется последовательно на каждой ноге, в равномерном, одинаковом темпе и на одинаково максимальную высоту. Тест прекращается при отказе спортсмена от работы ввиду полного утомления или при отчётливом снижении высоты подъёма. Сравнивается количество повторений.

Тест «ходьба на пальцах в полном приседе» качественный (рис.39). Он отражает полноту восстановления пассивной дорсифлексии голеностопного сустава. Спортсмен должен выполнить по 4-5 шагов каждой ногой. Оценивается техника его выполнения. Результат считается отрицательным, если спортсмен не может проталкиваться оперированной ногой так же как симметричной, и длина шагов каждой ноги различна.

Спортсмен должен выполнять без боли бег в среднем темпе до 30 минут, легкие ускорения (20-30 м), а также упражнения со скакалкой и облегченные прыжковые упражнения.

39. Ходьба в приседе на пальцах стоп

Принимаются во внимание также возраст, вес, специализация и квалификация спортсмена. Спортсменам юного возраста (до 18-20 лет) и низкой квалификации (ниже 1 разряда), как правило, требуется более длительный период реабилитации, чем спортсменам высшей квалификации.

При наличии резидуальных проявлений (боль, отёки, ограничение движений в голеностопном суставе), низких функциональных показателях, неудовлетворительных показателях выполнения специальных тестов необходим анализ их причин, уточнения диагноза и продолжение долечивания и реабилитации.

Средний срок начала спортивной тренировки после вышеизложенной технологии реабилитации – 5-5,5 мес. после операции для спортсменов циклических видов и 5,5-6 мес. – для спортсменов игровых (футбол, волейбол, баскетбол и др.) и сложно-координационных видов (фигурное катание, художественная и спортивная гимнастика и др.). Первые 1-2,5 месяца после начала тренировок рекомендуется использовать облегчённый брейс, который уменьшает риск рецидивных повреждений.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Houshian S, Tscherning T, Riegels-Nielsen P. The epidemiology of Achilles tendon rupture in a Danish county// Injury. 1998. Nov;29(9). P. 651-42.
- 2. Järvinen TA, Kannus P, Maffulli N, Khan KM. Achilles tendon disorders: etiology and epidemiology// Foot Ankle Clin. 2005 Jun;10(2). P. 255-66.
- 3. Dederich R. Degenerative Veränderungen als Voraussetzung zur Sehnenruptur. Dissertation,1988.
- 4. Mandelbaum BR, Myerson MS, Forster R. Achilles tendon ruptures. A new method of repair, early range of motion, and functional rehabilitation.// Am J Sports Med. 1995. Jul-Aug;23(4). P. 392-5.
- 5. Kvist M. Achilles tendon injuries in athletes// An. Chir. Gynaecol. 1991. -80 (2). P. 188-201.
- Pajala A et al. Rerupture and deep infection Following Treatment of Total Achilles Tendon Rupture// The Journal of Bone&Joint Surgery. – 2002. – 84. – P. 2016-2021.
- 7. Hess G W. Achilles Tendon Rupture: A Review of Etiology, Population, Anatomy, Risk Factors, and Injury Prevention//Foot Ankle Spec. 2010. Vol. 3. № 1. P. 29-32.
- 8. Уткин В.Л. Биомеханика физических упражнений Просв. 1989. С. 29.
- 9. Novachek T.// J. Bone and Joint surg. 1998. Vol.80. –A. P. 1220-1233.
- 10. Абрамова Т.Ф. и др. Особенности поддержания вертикальной стойки у спортсменов различных специализаций // Вестник спортивной науки. 2008. №4. C.61-62.
- 11. Башкиров В. Ф. Подкожные разрывы ахиллова сухожилия. Автореф дисс. канд. мед. наук М., 1971. 14 с.
- 12. Wilhelm K. Die statistiche und dinamiche Belastbarkeit der Achillesse-hne// Res. Exper. Med. – Berlin (W), 1972. – 157. – P.221-223.

- 13. Гершбург М.И. Биомеханический фактор возникновения хронических заболевания ахиллова сухожилия у спортсменов // Вестн. сп. мед. Рос-сии. – 1998. – №1. – 2 (20-21). – С. 21-25.
- 14. Ночёвкин В. А. «Стероидные» разрывы ахиллова сухожилия // Орто-пед. травматол. 1997 N 2. C. 67-68.
- 15. Hertling D, Kessler RM. Management of Common Musculoskeletal Disor-ders (2nd ed.) Philadelphia: JB Lippincott, 1990. 334 p.
- 16. Martin PE, Morgan DW. Biomechanical considerations for economical walking and running // Med Sci Sports Exerc. 1992. 24. P.467-474.
- 17. Subotnick S.I. ed. Sports Medicine of the Lower Extremity. New York: Churchill Livingstone. 1989. 193 p.
- 18. Lysholm J. and Wiklander J. Ijuries in Athletes// Am J Sport Med 1987. –15(2). P. 168-71.
- 19. Arner O, Lindholm AS. Subcutaneous rupture of the Achilles tendon. A study of 92 cases // Acta Chir. Scandinavica. 1959. 116. P. 484-490.
- 20. Kvist M. Achilles tendon injuries in athletes // Sports Med. 1994. Sep;18 (3). P.173-201.
- 21. Миронова З.С. и др. Перенапряжение опорно-двигательного аппарата у спортсменов. М. 1982. С. 45-48.
- 22. Миронова 3. С., Черкасова Т. И., Архипов С. В. Отдаленные результа-ты оперативного лечения подкожного разрыва ахиллова сухожилия // Вестн. хирургии -1984. N 3. C.24-27.
- 23. Gwynne-Jones D.P., Sims M., Handcock D. Epidemiology and outcomes of acute Achilles tendon rupture with operative or nonoperative treatment using an identical functional bracing protocol// Foot Ankle Int. –2011. –Apr;32(4). P.337-43.

- 24. Kangas J, Pajala A, Ohtonen P, Leppilahti J. Achilles tendon elongation after rupture repair: a randomized comparison of 2 postoperative regi-mens // Am J Sports Med. 2007. 35(1). P. 59-64.
- 25. Calder J., Karlsson J., Maffulli N. et al. Disorders of the Achilles tendon insertion. DJO Inc. 2012.- 215 p.
- 26. Akizuki K H et al. The relative stress on the Achilles tendon during am-bulation in an ankle immobilizer: implications for rehabilitation after Achil-les rupture tendon repaire // Br J Sports Med. 2001. 35. P. 329-333.
- 27. Calder J. and Saxby T. Early, active rehabilitation following mini-open repair of Achilles tendon rupture: a prospective study // Br. J. Sports Med. –2005. November; 39(11). P. 857–859.
- 28. Kangas J., Pajala A., Siira P. et al. Early functional treatment versus early immobilization in tension of the musculotendinous unit after Achilles rupture repair: a prospective, randomized, clinical study // J. Trauma. 2003. Jun; 54(6). P.1171-1180.
- 29. Sorrenti S.J., Achilles tendon rupture: effect of early mobilization in rehabilitation after surgical repair // Foot Ankle Int. 2006. Jun;27(6). –P. 407-10.
- 30. Freeman, M.A. The etiology and prevention of functional instability of the foot // J. Bone Joint Surg. 1965. Vol. 47. P. 678-685.
- 31. Lentell, G.L. The relationship between muscle function and ankle stabil-ity // J. Orthop. Sports Phys. Ther. 1990. Vol.11. P.605-611.
- 32. Hertel, J. Serial testing of postural control after acute lateral ankle sprain // J. Athl. Train. 2001. Vol.36. № 4. P.363-368.
- 33. Скворцов, Д.В. Клинический анализ движений. Стабилометрия. М.: Антидор, 2000. 192 с.
- 34. Golomer, E. Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers // Neurosci. Let. 1999. Vol. $3. N^2 4. P.189-192.$

- 35. Tropp H. Stabilometry in functional instability of the ankle and its value in predicting injury // Med. Sci. Sports Exerc. 1984. Vol. 16. P.64-66.
- 36. Vrbanić T.S., Ravlić-Gulan J., Gulan G., Matovinović D. Balance index score as a predictive factor for lower sports results or anterior cruciate liga-ment knee injuries in Croatian female athletes--preliminary study//. Coll An-tropol. 2007. Mar;31(1). P.253-8.
- 37. Leanderson J., Wykman A., Eriksson E. Ankle sprain and postural sway in basketball players //Knee Surg Sports Traumatol Arthrosc. 1993. 1(3-4). P.203-5.
- 38. Bressel E., Yonker J., Kras J.. Comparison of Static and Dynamic Bal-ance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes // J Athl Train. 2007. Jan-Mar; 42(1). P. 42–46.
- 39. Арьков В.В. Биомеханический и физиологический контроль восста-новления функции нижних конечностей у спортсменов, травмированных в процессе тренировок и соревнований. Дис. ... докт. мед. наук. М., 2011. 217 с.

Арт.: МСМR-2012